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Goals

● The fundamentals of digital filters
○ Linear time-invariant (LTI) system
○ FIR / IIR  Filters
○ Convolution
○ Impulse response
○ Frequency response



Digital Filters

● Take the input signal 𝑥 𝑛 as a sequence of numbers and returns the 
output signal 𝑦 𝑛 as another sequence of numbers

● Perform a combination of three mathematic operations upon the input or 
the output 
○ Multiplication:  𝑦 𝑛 = 𝑏 % 𝑥 𝑛
○ Delay:  𝑦 𝑛 = 𝑥 𝑛 −𝑀
○ Summation:  𝑦 𝑛 = 𝑥 𝑛 + 𝑎 % 𝑦 𝑛 − 𝑀

Input OutputFilters
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Commonly Used Digital Filters in Computer Music

● Bi-quads filters
○ lowpass, bandpass, highpass, equalizers
○ Change timbre 

● Comb filter (delayline)
○ delay/echo, chorus, flanger, reverb
○ Change timbre or add spatial effect

● Convolution
○ Reverberation (using room impulse responses), HRTF
○ Add spatial effect



Bi-quad Filter

● Two delay elements for input or output

● The delayed output (“feedback”) causes resonance

● Rooted from analog circuits (R-L-C) 
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Comb Filter

● Use a delayline

● Feedforward is used for chorus/flanger and feedback is for echo/reverb

● Rooted from magnetic tape recording 

𝑦 𝑛 = 𝑥 𝑛 + 𝑔 + 𝑥 𝑛 − 𝑀
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Convolution Filter

● Conduct the convolution operation with an impulse response of a 
system

● The impulse response is often measured from natural objects
○ HRTF: human ears  
○ Reverberation: rooms  

𝑦 𝑛 = 𝑏$ + 𝑥 𝑛 + 𝑏" + 𝑥 𝑛 − 1 + 𝑏# + 𝑥 𝑛 − 2 +⋯+ 𝑏% + 𝑥 𝑛 − 𝑀

ℎ(𝑛)= [𝑏$, 𝑏", 𝑏#… , 𝑏%]



General Form of Digital Filters

● Difference equation
○ 𝑦 𝑛 = 𝑏! % 𝑥 𝑛 + 𝑏" % 𝑥 𝑛 − 1 + 𝑏# % 𝑥 𝑛 − 2 + …+ 𝑏$ % 𝑥 𝑛 − 𝑀

−𝑎" % 𝑦 𝑛 − 1 − 𝑎# % 𝑦 𝑛 − 2 −⋯− 𝑎% % 𝑦 𝑛 − 𝑁

● Signal flow graph
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Linear Time-Invariant Filters

● They are called Linear Time-Invariant (LTI) filters in the context of digital 
signal processing 

● Linearity
○ Scaling: if 𝑥 𝑛 → 𝑦 𝑛 , then a % 𝑥 𝑛 → a % 𝑦 𝑛
○ Superposition: if 𝑥" 𝑛 → 𝑦" 𝑛 and 𝑥# 𝑛 → 𝑦# (n), then 𝑥" 𝑛 + 𝑥# 𝑛 →

𝑦" 𝑛 + 𝑦# 𝑛

● Time-Invariance
○ If 𝑥 𝑛 → 𝑦 𝑛 , then 𝑥 𝑛 − 𝑁 → 𝑦 𝑛 − 𝑁 for any 𝑁
○ This means that the system does not change its behavior over time



Linear Time-Invariant System

● Remember that sinusoids are eigenfunctions of linear system
○ The input sinusoids changes in amplitude and phase while preserving the 

same frequency
○ No new sinusoidal components are created

Linear
System
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The Simplest Lowpass Filter

● Difference equation: 𝑦 𝑛 = 𝑥 𝑛 + 𝑥(𝑛 − 1)

● Signal flow graph
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The Simplest Lowpass Filter: Sine-Wave Analysis

● Measure the amplitude and phase changes given a sinusoidal signal 
input



The Simplest Lowpass Filter: Frequency Response

● Plot the amplitude and phase change over different frequency
○ The frequency sweeps from 0 to the Nyquist rate



The Simplest Lowpass Filter: Frequency Response

● Mathematical approach
○ Use complex sinusoid as input: 𝑥 𝑛 = 𝑒&',

○ Then, the output is: 
𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 − 1 = 𝑒&', + 𝑒&'(,-") = 1 + 𝑒-&' % 𝑒&',

= 1 + 𝑒-&' % 𝑥(𝑛)

○ Frequency response: 𝐻 𝜔 = 1 + 𝑒-&' = 𝑒&
!
" + 𝑒-&

!
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!
" = 2cos('

#
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○ Amplitude response: 𝐻(𝜔) = 2 cos '
#

○ Phase response: ∠𝐻 𝜔 = −'
#



Finite Impulse Response (FIR) System

● Difference equation
𝑦 𝑛 = 𝑏! % 𝑥 𝑛 + 𝑏" % 𝑥 𝑛 − 1 + 𝑏# % 𝑥 𝑛 − 2 +⋯+ 𝑏$ % 𝑥 𝑛 − 𝑀

● Signal flow graph

𝑧!"

𝑥 𝑛 +

𝑧!"

𝑧!"

...

𝑏"

𝑏#

𝑏$

𝑏%

𝑥 𝑛 − 1

𝑥 𝑛 − 2

𝑥 𝑛 −𝑀

𝑦 𝑛



Impulse Response

● The system output when the input is a unit impulse
○ 𝑥 𝑛 = 𝛿 𝑛 = 1, 0, 0, 0, … → 𝑦 𝑛 = ℎ(𝑛)= [𝑏!, 𝑏", 𝑏#… , 𝑏$] (for FIR 

system)

● Characterizes the digital system as a sequence of numbers
○ A system is represented just like audio samples!

𝑥 𝑛 = 𝛿 𝑛 𝑦 𝑛 = ℎ(𝑛)ℎ 𝑛

Input OutputLTI
System



Examples: Simplest FIR filters and Moving-Average Filters

● The simplest lowpass filter
○ h 𝑛 = 1, 1

● The simplest highpass filter
○ h 𝑛 = 1,−1

● Moving-average filter (order=5)

○ h 𝑛 = "
.
, "
.
, "
.
, "
.
, "
.



Convolution

● The output of LTI digital filters is represented by the convolution 
operation between 𝑥 𝑛 and ℎ 𝑛

● Examples
○ The simplest lowpass filter 
○ 𝑦 𝑛 = 1, 1 ∗ 𝑥 𝑛 = 1 % 𝑥(𝑛) + 1 % 𝑥(𝑛 − 1) = 𝑥 𝑛 + 𝑥(𝑛 − 1)

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 = :
'(!)

)

𝑥 𝑖 + ℎ 𝑛 − 𝑖 = :
'(!)

)

ℎ(𝑖) + 𝑥(𝑛 − 𝑖)

This is more practical expression  
when the input is an audio streaming



Proof: Convolution 

● Method 1
○ The input is represented as the sum of weighted and delayed impulses units

■ 𝑥 𝑛 = 𝑥$, 𝑥", 𝑥#… , 𝑥% = 𝑥$ + 𝛿 𝑛 + 𝑥" + 𝛿 𝑛 − 1 + 𝑥# + 𝛿 𝑛 − 2 +⋯+ 𝑥% +
𝛿 𝑛 − 𝑀

○ By the linearity and time-invariance 
■ 𝑦 𝑛 = 𝑥$ + ℎ 𝑛 + 𝑥" + ℎ 𝑛 − 1 + 𝑥# + ℎ 𝑛 − 2 +⋯+ 𝑥% + ℎ 𝑛 − 𝑀 =

∑'($% 𝑥(𝑖) + ℎ(𝑛 − 𝑖)



Proof: Convolution 

● Method 2
○ The impulse response can be represented as a set of weighted impulses

■ ℎ 𝑛 = 𝑏$, 𝑏", 𝑏#… , 𝑏% = 𝑏$ + 𝛿 𝑛 + 𝑏" + 𝛿 𝑛 − 1 + 𝑏# + 𝛿 𝑛 − 2 +⋯+ 𝑏% +
𝛿 𝑛 − 𝑀

○ By the linearity, the distributive property and 𝑥 𝑛 ∗ 𝛿 𝑛 − 𝑘 = 𝑥(𝑛 − 𝑘)
■ 𝑦 𝑛 = 𝑏$ + 𝑥 𝑛 + 𝑏" + 𝑥 𝑛 − 1 + 𝑏# + 𝑥 𝑛 − 2 +⋯+ 𝑏% + 𝑥 𝑛 − 𝑀 =

∑'($% ℎ(𝑖) + 𝑥(𝑛 − 𝑖)



Properties of Convolution

● Commutative: 𝑥 𝑛 ∗ ℎ" 𝑛 ∗ ℎ# 𝑛 = 𝑥 𝑛 ∗ ℎ# 𝑛 ∗ ℎ" 𝑛

● Associative:  (𝑥 𝑛 ∗ ℎ" 𝑛 ) ∗ ℎ# 𝑛 = 𝑥 𝑛 ∗ (ℎ" 𝑛 ∗ ℎ# 𝑛 )

● Distributive:   𝑥 𝑛 ∗ ℎ" 𝑛 + ℎ# 𝑛 = 𝑥 𝑛 ∗ ℎ" 𝑛 + 𝑥 𝑛 ∗ ℎ# 𝑛



Example: Convolution

● Given 𝑥 𝑛 = 𝑥$, 𝑥", 𝑥#, … , 𝑥% and ℎ 𝑛 = ℎ$, ℎ", ℎ#
○ 𝑦 𝑛 = ∑/0!$ ℎ(𝑖) % 𝑥(𝑛 − 𝑖)
○ 𝑦 0 = ℎ(0) 2 𝑥(0)
○ 𝑦 1 = ℎ 0 2 𝑥 1 + ℎ(1) 2 𝑥(0)
○ 𝑦 2 = ℎ 0 2 𝑥 2 + ℎ 1 2 𝑥 1 + ℎ 2 2 𝑥 0
○ 𝑦 3 = ℎ 0 2 𝑥 3 + ℎ 1 2 𝑥 2 + ℎ 2 2 𝑥 1
○ 𝑦 4 = ℎ 0 2 𝑥 4 + ℎ 1 2 𝑥 3 + ℎ 2 2 𝑥 2
○ 𝑦 5 = ℎ 0 2 𝑥 5 + ℎ 1 2 𝑥 4 + ℎ 2 2 𝑥 3
○ 𝑦 6 = ℎ 1 2 𝑥 5 + ℎ 2 2 𝑥 4
○ 𝑦 7 = ℎ 2 2 𝑥 5

● The size of transient region is equal to the number of delay operators

● If the length of 𝑥 𝑛 is 𝑀 and the length of ℎ 𝑛 is 𝑁, then the length of 
𝑦 𝑛 is 𝑀 +𝑁 − 1.

Transient state 

Steady state

Transient state 



Demo: Convolution



Example: Convolution Reverb

● Convolution Reverb

Room Impulse Response

Lobby

Church



A Simple Feedback Lowpass Filter

● Difference equation: 𝑦 𝑛 = 𝑥 𝑛 + 𝑎 3 𝑦(𝑛 − 1)

● Signal flow graph
○ When 𝑎 is slightly less than 1, it is called “Leaky Integrator” 
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A Simple Feedback Lowpass Filter: Impulse Response

● Impulse response: exponential decays
○ 𝑦 0 = 𝑥 0 = 1
○ 𝑦 1 = 𝑥 1 + 𝑎 % 𝑦 0 = 𝑎
○ 𝑦 2 = 𝑥 2 + 𝑎 % 𝑦 1 = 𝑎#

○ 𝑦 3 = 𝑥 3 + 𝑎 % 𝑦 2 = 𝑎#

○ …

● Stability Issue! 
○ If 𝑎 < 1, the filter output converges (stable)
○ If 𝑎 = 1, the filter output oscillates (critical)
○ If 𝑎 > 1,  the filter output diverges (unstable)

ℎ(𝑛)=[1, 𝑎, 𝑎#, 𝑎*, … ]



A Simple Feedback Lowpass Filter: Sine-Wave Analysis

● Measure the amplitude and phase changes given a sinusoidal signal 
input

𝑎 = 0.9

Transient state Steady state Transient state 



A Simple Feedback Lowpass Filter: Frequency Response

● More dramatic change than the simplest lowpass filter (FIR)
○ Phase response is not linear

𝑦 𝑛 = 𝑥 𝑛 + 0.9 2 𝑦(𝑛 − 1)



A Simple Feedback Lowpass Filter: Frequency Response

● Mathematical approach
○ Use complex sinusoid as input: 𝑥 𝑛 = 𝑒&',

○ 𝑦 𝑛 = 𝐺 𝜔 𝑒&(',1) ' ) à 𝑦 𝑛 − 𝑚 = 𝑒-&'2𝑦 𝑛 for any 𝑚
○ The output is: 𝑦 𝑛 = 𝑥 𝑛 + 𝑎 % 𝑦(𝑛 − 1)

𝑦 𝑛 = 𝑥 𝑛 + 𝑎 % 𝑒&'𝑦 𝑛

○ Frequency response: 𝐻 𝜔 = "
"-345#$!

= "
"-34678 ' 134&489: '

○ Amplitude response: 𝐻(𝜔) = "
("-34678 ' )"1(3489: ' )"

○ Phase response: ∠𝐻 𝜔 = −atan( 3489: '
"-3 4678 '

)

● Note that the this approach is getting complicated 



Reson Filter

● Difference equation
○ 𝑦 𝑛 = 𝑥 𝑛 + 2𝑟 % cos(𝜃) % 𝑦 𝑛 − 1 − 𝑟# % 𝑦 𝑛 − 2

● Signal flow graph
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Reson Filter: Frequency Response

● Generate resonance at a particular frequency 
○ Control the peak height by 𝑟 and the peak frequency by 𝜃

For stability: 𝑟 < 1

𝑟 < 1 is getting close to 1

𝜃 controls the location of the peak



Reson Filter

● Mathematical approach
○ Use complex sinusoid as input: 𝑥 𝑛 = 𝑒&',

○ 𝑦 𝑛 = 𝐺 𝜔 𝑒&(',1) ' ) à 𝑦 𝑛 − 𝑚 = 𝑒-&2'𝑦 𝑛 for any 𝑚
○ The output is: 𝑦 𝑛 = 𝑥 𝑛 + 2𝑟 % cos(𝜃) % 𝑦 𝑛 − 1 − 𝑟# % 𝑦 𝑛 − 2

𝑦 𝑛 = 𝑥 𝑛 + 2𝑟 % cos(𝜃) % 𝑒&'𝑦 𝑛 − 𝑟# % 𝑒&#'𝑦 𝑛 − 2
○ Frequency response

■ 𝐻 𝜔 = "
"-#;4678())45$!1;"45$"!

= "
("-;(678 ) 1&489: ) )5$!)("-;(678 ) -&489: ) )5$!)

● Now you see that the this approach is getting even more complicated 
○ We will introduce more intuitive method to obtain the frequency response

Amplitude response: 𝐻(𝜔) ?

Phase response: ∠𝐻 𝜔 ?



Infinite Impulse Response (IIR) Filters

● Difference equation
○ 𝑦 𝑛 = 𝑏! % 𝑥 𝑛 − 𝑎" % 𝑦 𝑛 − 1 − 𝑎# % 𝑦 𝑛 − 2 −⋯− 𝑎% % 𝑦 𝑛 − 𝑁

● Signal flow graph
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General Form of LTI Filters

● Difference equation
○ 𝑦 𝑛 = 𝑏! % 𝑥 𝑛 + 𝑏" % 𝑥 𝑛 − 1 + 𝑏# % 𝑥 𝑛 − 2 + …+ 𝑏$ % 𝑥 𝑛 − 𝑀

−𝑎" % 𝑦 𝑛 − 1 − 𝑎# % 𝑦 𝑛 − 2 −⋯− 𝑎% % 𝑦 𝑛 − 𝑁

● Signal flow graph
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LTI filters

● Characterized by 
○ Impulse response (time-domain): ℎ 𝑛
○ Frequency response (frequency-domain): 𝐻 𝜔

𝑥 𝑛 𝑦 𝑛LTI Filters
𝛿 𝑛 = [1, 0, 0, … ] ℎ 𝑛 = [0.5, 0.8, 0.6, 0.2, … ]

. . .
ℎ 𝑛

𝐻 𝜔

𝑒&'(
𝐴(𝜔)𝑒'((*)𝑒'*,



Questions

● How can we easily derive the frequency response? 

● What is the relation between the impulse response and the frequency 
response? 



Bi-quad filter

● Difference equation

● Signal flow graph
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Bi-quad filter: Frequency Response

● Sine-wave analysis
○ 𝑥 𝑛 = 𝑒&', à 𝑥 𝑛 − 1 = 𝑒&'(,-") = 𝑒-&'𝑥 𝑛 , 𝑥 𝑛 − 2 = 𝑒-&#'𝑥 𝑛
○ 𝑦 𝑛 = 𝐺 𝜔 𝑒&(',1) ' ) à 𝑦 𝑛 − 1 = 𝐺 𝜔 𝑒&('(,-")1) ' ) = 𝑒-&'𝑦 𝑛 , 

𝑦 𝑛 − 2 = 𝑒-&#'𝑦 𝑛

● Putting this into the different equation 

𝑦 𝑛 = 𝑏$ + 𝑥 𝑛 + 𝑏" + 𝑒!:; + 𝑥 𝑛 + 𝑏# + 𝑒!:#; + 𝑥 𝑛 − 𝑎" + 𝑒!:; + 𝑦 𝑛 − 𝑎# + 𝑒!:#; + 𝑦 𝑛

𝑦 𝑛 =
𝑏$ + 𝑏" + 𝑒!:; + 𝑏# + 𝑒!:#;

1 + 𝑎" + 𝑒!:; + 𝑎# + 𝑒!:#;
𝑥(𝑛)

𝐻(𝜔) =
𝑏$ + 𝑏" + 𝑒!:; + 𝑏# + 𝑒!:#;

1 + 𝑎" + 𝑒!:; + 𝑎# + 𝑒!:#;



Bi-quad filter: Amplitude and Phase Response

● Amplitude Response: 𝐺 𝜔 = 𝐻(𝜔)

● Phase response: 𝜃 𝜔 = ∠𝐻(𝜔)

● The analytic expression of frequency response is complicated!

𝐺 𝜔 = 𝐻(𝜔) =
𝑏$ + 𝑏" + 𝑒!:; + 𝑏# + 𝑒!:#;

1 + 𝑎" + 𝑒!:; + 𝑎# + 𝑒!:#;

=
𝑏$ + 𝑏" + (cos(𝜔) − 𝑗sin(𝜔)) + 𝑏# + (cos(2𝜔) − 𝑗sin(2𝜔))
1 + 𝑎" + (cos(𝜔) − 𝑗sin(𝜔)) + 𝑎# + (cos(2𝜔) − 𝑗sin(2𝜔))

=
𝑏$ + 𝑏" + cos 𝜔 + 𝑏# + cos(2𝜔) − 𝑗(𝑏" + sin 𝜔 + 𝑏# + sin(2𝜔))
1 + 𝑎" + cos 𝜔 + 𝑎# + cos(2𝜔) − 𝑗( 𝑎"+ sin 𝜔 + 𝑎# + 𝑗 sin 2𝜔 )

= . . .



Bi-quad filter: Z-Transform

● 𝑍-transform
○ Define z as a variable in the complex plane: we call it z-plane
○ When replacing 𝑧 = 𝑒&' = cos 𝜔 + 𝑗 sin 𝜔 (on unit circle), the frequency 

response changes to the following form

○ We call this 𝒛-transform or transfer function of the filter
○ “𝑧-"” corresponds to one sample delay:  delay operator or delay element

𝐻 𝑧 =
𝑏$ + 𝑏" + 𝑧!" + 𝑏# + 𝑧!#

1 + 𝑎" + 𝑧!" + 𝑎# + 𝑧!#
𝐻(𝜔) =

𝑏$ + 𝑏" + 𝑒!:; + 𝑏# + 𝑒!:#;

1 + 𝑎" + 𝑒!:; + 𝑎# + 𝑒!:#;



Bi-quad filter: Poles and Zeros in Z-Transform

● The polynomial of 𝑧!" in 𝐻 𝑧 can be factorized 
○ 𝑊e can find roots for both numerator and denominator
○ Zeros: roots of numerator
○ Poles: roots of denominator

○ Zeros and poles can be complex numbers (as a complex conjugate)

● We can analyze frequency response more easily using poles and zeros 
than numerator or denominator coefficient

𝐻 𝑧 =
1 − 𝑞"𝑧!" 1 − 𝑞#𝑧!"

1 − 𝑝"𝑧!" 1 − 𝑝#𝑧!"



Bi-quad filter: Pole-Zero Analysis: Amplitude Response

● Amplitude Response
○ Computed using distances between poles and unit circles and distances 

between zeros and units circles on Z-plane

𝐺 𝜔 = 𝐻(𝜔) =
1 − 𝑞"𝑒!:; 1 − 𝑞#𝑒!:;

1 − 𝑝"𝑒!:; 1 − 𝑝#𝑒!:; )

=
𝑒:; − 𝑞" 𝑒:; − 𝑞#
𝑒:; − 𝑝" 𝑒:; − 𝑝#

=
𝑒:; − 𝑞" 𝑒:; − 𝑞#
𝑒:; − 𝑝" 𝑒:; − 𝑝#



Example: Simplest lowpass filter

● Transfer function 
○ 𝐻 𝑧 = 1 + 𝑧!"

○ Zeros: 𝑞" = −1 (no pole) 

● Amplitude Response
○ 𝐺 𝜔 = 𝐻(𝜔) = 𝑒&' + 1

Z-plane

𝑒:;

𝜔 = 0

𝜔 = 𝜋/2

𝜔 = 𝜋



Example: Simple feedback lowpass filter

● Transfer function 

○ 𝐻 𝑧 = 𝐻 𝑧 = "
"!$.'()<=

○ Poles: 𝑝" = 0.9 (no zero) 

● Amplitude Response

○ 𝐺 𝜔 = 𝐻(𝜔) = "
5$!-!.=

Z-plane

𝑒:;

𝜔 = 0

𝜔 = 𝜋/2

𝜔 = 𝜋



Example: Reson Filter

● Transfer function 

○ 𝐻 𝑧 = "
"!#*+,-.()<=/*>()<>

○ Poles: 𝑟(cos𝜃 + 𝑗sin𝜃), 𝑟(cos𝜃 − 𝑗sin𝜃) 
(no zero) 

● Amplitude response

○ 𝐺 𝜔 = "
5$!-(678)1&89:)) 4 5$!-(678)-&89:))

Z-plane

𝑒:;

𝜔 = 0

𝜔 = 𝜋/2

𝜔 = 𝜋 𝜃

𝑟

𝑟 < 1 is getting close to 1

𝜃 controls the location of the peak



Poles and Stability: one-pole filter 
I
● If poles are inside the unit circle: 𝑝"< 1 or 𝑝"> −1

○ The system is stable 
○ The impulse response decays

● If poles are on the unit circle: 𝑝"= 1 or 𝑝"= −1
○ The system is critically-stable
○ The impulse response is constant or oscillates  

● If poles are are outside the unit circle : 𝑝"> 1 or 𝑝"< −1
○ The system is unstable
○ The impulse response diverges

Z-plane

𝑒:;



Poles and Stability: Reson filter 

● If poles are inside the unit circle: 𝑟 < 1
○ The system is stable 
○ The impulse response decays with oscillation 

● If poles are on the unit circle: 𝑟 = 1
○ The system is critically-stable
○ The impulse response oscillates with constant amplitude (sine generation)

● If poles are outside the unit circle: 𝑟 > 1
○ The system is unstable
○ The impulse response diverges

Z-plane

𝑒:;

𝜃

𝑟



Bi-quad filter: Pole-Zero Analysis: Phase Response

● Phase Response
○ Computed using angles between poles and unit circles and angles between 

zeros and units circles on Z-plane

𝜃 𝜔 = ∠𝐻(𝜔) =
∠ 1 − 𝑞"𝑒!:; 1 − 𝑞#𝑒!:;

∠ 1 − 𝑝"𝑒!:; 1 − 𝑝#𝑒!:;

= ∠ 1 − 𝑞"𝑒!:; + ∠ 1 − 𝑞#𝑒!:; − ∠ 1 − 𝑝"𝑒!:; − ∠ 1 − 𝑝#𝑒!:;

= ∠ 𝑒:; − 𝑞" + ∠ 𝑒:; − 𝑞# − ∠ 𝑒:; − 𝑝" − ∠ 𝑒:; − 𝑝#



Example: Reson Filter

● Transfer function 

○ 𝐻 𝑧 = "
"!#*+,-.()<=/*>()<>

○ Poles: 𝑝" = 𝑟(cos𝜃 + 𝑗sin𝜃)
𝑝# = 𝑟(cos𝜃 − 𝑗sin𝜃) 

● Phase response
○ 𝜃 𝜔 = ∠𝐻 𝜔 = −∠ 𝑒&' − 𝑝" − ∠ 𝑒&' − 𝑝#

Z-plane

𝑒:;

𝜔 = 0

𝜔 = 𝜋/2

𝜔 = 𝜋 𝜃

𝑟



Digitized Resonant Low-pass Filter

● Transfer Function
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𝐻 𝑧 = (
1 − cos 𝜃

2
)

1 +2𝑧!" +𝑧!#

(1 + 𝛼) −2cos 𝜃𝑧!" +(1 − 𝛼)𝑧!#
𝛼 =

sin 𝜃
2𝑄 𝜃 = 2𝜋

𝑓-
𝑓.

fc : cut-off frequency Q: resonance 

Pole and zero 



Digitized Resonant High-pass Filter

● Transfer Function
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1 + cos 𝜃
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)
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Digitized Band-pass filter

● Transfer Function
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𝐻 𝑧 = (
sin 𝜃
2𝑄

)
1 −𝑧!#

(1 + 𝛼) −2cos 𝜃𝑧!" +(1 − 𝛼)𝑧!#
𝛼 =

sin 𝜃
2𝑄 𝜃 = 2𝜋
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𝑓.



Digitized Notch filter

● Transfer Function
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Digitized Equalizer

● Transfer Function

54

Q=1

𝐻 𝑧 =
(1 + 𝛼 2 𝐴) −2cos 𝜃𝑧!" +(1 − 𝛼 2 𝐴)𝑧!#

(1 + 𝛼/𝐴) −2cos 𝜃𝑧!" +(1 − 𝛼/𝐴)𝑧!# 𝛼 =
sin 𝜃
2𝑄 𝜃 = 2𝜋

𝑓-
𝑓.

𝐴 = 10(
/012(34)

5% )

Q=4



Demo: Pole-Zero Analysis 

● https://www.earlevel.com/main/2013/10/28/pole-zero-placement-v2/

https://www.earlevel.com/main/2013/10/28/pole-zero-placement-v2/

